metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.10D14, C23.14D28, (C2×C28).51D4, C2.6(C28⋊7D4), (C22×C4).91D14, (C22×C14).65D4, C14.58(C4⋊D4), C22.125(C2×D28), C7⋊4(C23.11D4), C14.C42⋊15C2, C2.6(C28.17D4), C14.38(C4.4D4), C22.98(C4○D28), (C22×C28).60C22, (C23×C14).36C22, C23.370(C22×D7), C14.16(C42⋊2C2), C22.96(D4⋊2D7), (C22×C14).328C23, C14.73(C22.D4), C2.14(C23.D14), C2.16(C22.D28), C2.8(C23.18D14), (C22×Dic7).42C22, (C2×C4⋊Dic7)⋊12C2, (C2×C14).432(C2×D4), (C2×C4).30(C7⋊D4), (C2×C22⋊C4).15D7, (C14×C22⋊C4).16C2, C22.126(C2×C7⋊D4), (C2×C23.D7).15C2, (C2×C14).144(C4○D4), SmallGroup(448,487)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.10D14
G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=c, ab=ba, dad-1=ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 692 in 170 conjugacy classes, 59 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C23.11D4, C4⋊Dic7, C23.D7, C7×C22⋊C4, C22×Dic7, C22×C28, C23×C14, C14.C42, C14.C42, C2×C4⋊Dic7, C2×C23.D7, C14×C22⋊C4, C24.10D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, D28, C7⋊D4, C22×D7, C23.11D4, C2×D28, C4○D28, D4⋊2D7, C2×C7⋊D4, C23.D14, C22.D28, C28⋊7D4, C23.18D14, C28.17D4, C24.10D14
(1 15)(2 211)(3 17)(4 213)(5 19)(6 215)(7 21)(8 217)(9 23)(10 219)(11 25)(12 221)(13 27)(14 223)(16 197)(18 199)(20 201)(22 203)(24 205)(26 207)(28 209)(29 133)(30 44)(31 135)(32 46)(33 137)(34 48)(35 139)(36 50)(37 113)(38 52)(39 115)(40 54)(41 117)(42 56)(43 119)(45 121)(47 123)(49 125)(51 127)(53 129)(55 131)(57 86)(58 143)(59 88)(60 145)(61 90)(62 147)(63 92)(64 149)(65 94)(66 151)(67 96)(68 153)(69 98)(70 155)(71 100)(72 157)(73 102)(74 159)(75 104)(76 161)(77 106)(78 163)(79 108)(80 165)(81 110)(82 167)(83 112)(84 141)(85 179)(87 181)(89 183)(91 185)(93 187)(95 189)(97 191)(99 193)(101 195)(103 169)(105 171)(107 173)(109 175)(111 177)(114 128)(116 130)(118 132)(120 134)(122 136)(124 138)(126 140)(142 180)(144 182)(146 184)(148 186)(150 188)(152 190)(154 192)(156 194)(158 196)(160 170)(162 172)(164 174)(166 176)(168 178)(198 212)(200 214)(202 216)(204 218)(206 220)(208 222)(210 224)
(1 54)(2 55)(3 56)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(57 156)(58 157)(59 158)(60 159)(61 160)(62 161)(63 162)(64 163)(65 164)(66 165)(67 166)(68 167)(69 168)(70 141)(71 142)(72 143)(73 144)(74 145)(75 146)(76 147)(77 148)(78 149)(79 150)(80 151)(81 152)(82 153)(83 154)(84 155)(85 193)(86 194)(87 195)(88 196)(89 169)(90 170)(91 171)(92 172)(93 173)(94 174)(95 175)(96 176)(97 177)(98 178)(99 179)(100 180)(101 181)(102 182)(103 183)(104 184)(105 185)(106 186)(107 187)(108 188)(109 189)(110 190)(111 191)(112 192)(113 221)(114 222)(115 223)(116 224)(117 197)(118 198)(119 199)(120 200)(121 201)(122 202)(123 203)(124 204)(125 205)(126 206)(127 207)(128 208)(129 209)(130 210)(131 211)(132 212)(133 213)(134 214)(135 215)(136 216)(137 217)(138 218)(139 219)(140 220)
(1 224)(2 197)(3 198)(4 199)(5 200)(6 201)(7 202)(8 203)(9 204)(10 205)(11 206)(12 207)(13 208)(14 209)(15 210)(16 211)(17 212)(18 213)(19 214)(20 215)(21 216)(22 217)(23 218)(24 219)(25 220)(26 221)(27 222)(28 223)(29 119)(30 120)(31 121)(32 122)(33 123)(34 124)(35 125)(36 126)(37 127)(38 128)(39 129)(40 130)(41 131)(42 132)(43 133)(44 134)(45 135)(46 136)(47 137)(48 138)(49 139)(50 140)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 180)(58 181)(59 182)(60 183)(61 184)(62 185)(63 186)(64 187)(65 188)(66 189)(67 190)(68 191)(69 192)(70 193)(71 194)(72 195)(73 196)(74 169)(75 170)(76 171)(77 172)(78 173)(79 174)(80 175)(81 176)(82 177)(83 178)(84 179)(85 141)(86 142)(87 143)(88 144)(89 145)(90 146)(91 147)(92 148)(93 149)(94 150)(95 151)(96 152)(97 153)(98 154)(99 155)(100 156)(101 157)(102 158)(103 159)(104 160)(105 161)(106 162)(107 163)(108 164)(109 165)(110 166)(111 167)(112 168)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 67 224 190)(2 66 197 189)(3 65 198 188)(4 64 199 187)(5 63 200 186)(6 62 201 185)(7 61 202 184)(8 60 203 183)(9 59 204 182)(10 58 205 181)(11 57 206 180)(12 84 207 179)(13 83 208 178)(14 82 209 177)(15 81 210 176)(16 80 211 175)(17 79 212 174)(18 78 213 173)(19 77 214 172)(20 76 215 171)(21 75 216 170)(22 74 217 169)(23 73 218 196)(24 72 219 195)(25 71 220 194)(26 70 221 193)(27 69 222 192)(28 68 223 191)(29 163 119 107)(30 162 120 106)(31 161 121 105)(32 160 122 104)(33 159 123 103)(34 158 124 102)(35 157 125 101)(36 156 126 100)(37 155 127 99)(38 154 128 98)(39 153 129 97)(40 152 130 96)(41 151 131 95)(42 150 132 94)(43 149 133 93)(44 148 134 92)(45 147 135 91)(46 146 136 90)(47 145 137 89)(48 144 138 88)(49 143 139 87)(50 142 140 86)(51 141 113 85)(52 168 114 112)(53 167 115 111)(54 166 116 110)(55 165 117 109)(56 164 118 108)
G:=sub<Sym(224)| (1,15)(2,211)(3,17)(4,213)(5,19)(6,215)(7,21)(8,217)(9,23)(10,219)(11,25)(12,221)(13,27)(14,223)(16,197)(18,199)(20,201)(22,203)(24,205)(26,207)(28,209)(29,133)(30,44)(31,135)(32,46)(33,137)(34,48)(35,139)(36,50)(37,113)(38,52)(39,115)(40,54)(41,117)(42,56)(43,119)(45,121)(47,123)(49,125)(51,127)(53,129)(55,131)(57,86)(58,143)(59,88)(60,145)(61,90)(62,147)(63,92)(64,149)(65,94)(66,151)(67,96)(68,153)(69,98)(70,155)(71,100)(72,157)(73,102)(74,159)(75,104)(76,161)(77,106)(78,163)(79,108)(80,165)(81,110)(82,167)(83,112)(84,141)(85,179)(87,181)(89,183)(91,185)(93,187)(95,189)(97,191)(99,193)(101,195)(103,169)(105,171)(107,173)(109,175)(111,177)(114,128)(116,130)(118,132)(120,134)(122,136)(124,138)(126,140)(142,180)(144,182)(146,184)(148,186)(150,188)(152,190)(154,192)(156,194)(158,196)(160,170)(162,172)(164,174)(166,176)(168,178)(198,212)(200,214)(202,216)(204,218)(206,220)(208,222)(210,224), (1,54)(2,55)(3,56)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(57,156)(58,157)(59,158)(60,159)(61,160)(62,161)(63,162)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,193)(86,194)(87,195)(88,196)(89,169)(90,170)(91,171)(92,172)(93,173)(94,174)(95,175)(96,176)(97,177)(98,178)(99,179)(100,180)(101,181)(102,182)(103,183)(104,184)(105,185)(106,186)(107,187)(108,188)(109,189)(110,190)(111,191)(112,192)(113,221)(114,222)(115,223)(116,224)(117,197)(118,198)(119,199)(120,200)(121,201)(122,202)(123,203)(124,204)(125,205)(126,206)(127,207)(128,208)(129,209)(130,210)(131,211)(132,212)(133,213)(134,214)(135,215)(136,216)(137,217)(138,218)(139,219)(140,220), (1,224)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,209)(15,210)(16,211)(17,212)(18,213)(19,214)(20,215)(21,216)(22,217)(23,218)(24,219)(25,220)(26,221)(27,222)(28,223)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,139)(50,140)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,180)(58,181)(59,182)(60,183)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,194)(72,195)(73,196)(74,169)(75,170)(76,171)(77,172)(78,173)(79,174)(80,175)(81,176)(82,177)(83,178)(84,179)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,67,224,190)(2,66,197,189)(3,65,198,188)(4,64,199,187)(5,63,200,186)(6,62,201,185)(7,61,202,184)(8,60,203,183)(9,59,204,182)(10,58,205,181)(11,57,206,180)(12,84,207,179)(13,83,208,178)(14,82,209,177)(15,81,210,176)(16,80,211,175)(17,79,212,174)(18,78,213,173)(19,77,214,172)(20,76,215,171)(21,75,216,170)(22,74,217,169)(23,73,218,196)(24,72,219,195)(25,71,220,194)(26,70,221,193)(27,69,222,192)(28,68,223,191)(29,163,119,107)(30,162,120,106)(31,161,121,105)(32,160,122,104)(33,159,123,103)(34,158,124,102)(35,157,125,101)(36,156,126,100)(37,155,127,99)(38,154,128,98)(39,153,129,97)(40,152,130,96)(41,151,131,95)(42,150,132,94)(43,149,133,93)(44,148,134,92)(45,147,135,91)(46,146,136,90)(47,145,137,89)(48,144,138,88)(49,143,139,87)(50,142,140,86)(51,141,113,85)(52,168,114,112)(53,167,115,111)(54,166,116,110)(55,165,117,109)(56,164,118,108)>;
G:=Group( (1,15)(2,211)(3,17)(4,213)(5,19)(6,215)(7,21)(8,217)(9,23)(10,219)(11,25)(12,221)(13,27)(14,223)(16,197)(18,199)(20,201)(22,203)(24,205)(26,207)(28,209)(29,133)(30,44)(31,135)(32,46)(33,137)(34,48)(35,139)(36,50)(37,113)(38,52)(39,115)(40,54)(41,117)(42,56)(43,119)(45,121)(47,123)(49,125)(51,127)(53,129)(55,131)(57,86)(58,143)(59,88)(60,145)(61,90)(62,147)(63,92)(64,149)(65,94)(66,151)(67,96)(68,153)(69,98)(70,155)(71,100)(72,157)(73,102)(74,159)(75,104)(76,161)(77,106)(78,163)(79,108)(80,165)(81,110)(82,167)(83,112)(84,141)(85,179)(87,181)(89,183)(91,185)(93,187)(95,189)(97,191)(99,193)(101,195)(103,169)(105,171)(107,173)(109,175)(111,177)(114,128)(116,130)(118,132)(120,134)(122,136)(124,138)(126,140)(142,180)(144,182)(146,184)(148,186)(150,188)(152,190)(154,192)(156,194)(158,196)(160,170)(162,172)(164,174)(166,176)(168,178)(198,212)(200,214)(202,216)(204,218)(206,220)(208,222)(210,224), (1,54)(2,55)(3,56)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(57,156)(58,157)(59,158)(60,159)(61,160)(62,161)(63,162)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,193)(86,194)(87,195)(88,196)(89,169)(90,170)(91,171)(92,172)(93,173)(94,174)(95,175)(96,176)(97,177)(98,178)(99,179)(100,180)(101,181)(102,182)(103,183)(104,184)(105,185)(106,186)(107,187)(108,188)(109,189)(110,190)(111,191)(112,192)(113,221)(114,222)(115,223)(116,224)(117,197)(118,198)(119,199)(120,200)(121,201)(122,202)(123,203)(124,204)(125,205)(126,206)(127,207)(128,208)(129,209)(130,210)(131,211)(132,212)(133,213)(134,214)(135,215)(136,216)(137,217)(138,218)(139,219)(140,220), (1,224)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,209)(15,210)(16,211)(17,212)(18,213)(19,214)(20,215)(21,216)(22,217)(23,218)(24,219)(25,220)(26,221)(27,222)(28,223)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,139)(50,140)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,180)(58,181)(59,182)(60,183)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,194)(72,195)(73,196)(74,169)(75,170)(76,171)(77,172)(78,173)(79,174)(80,175)(81,176)(82,177)(83,178)(84,179)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,67,224,190)(2,66,197,189)(3,65,198,188)(4,64,199,187)(5,63,200,186)(6,62,201,185)(7,61,202,184)(8,60,203,183)(9,59,204,182)(10,58,205,181)(11,57,206,180)(12,84,207,179)(13,83,208,178)(14,82,209,177)(15,81,210,176)(16,80,211,175)(17,79,212,174)(18,78,213,173)(19,77,214,172)(20,76,215,171)(21,75,216,170)(22,74,217,169)(23,73,218,196)(24,72,219,195)(25,71,220,194)(26,70,221,193)(27,69,222,192)(28,68,223,191)(29,163,119,107)(30,162,120,106)(31,161,121,105)(32,160,122,104)(33,159,123,103)(34,158,124,102)(35,157,125,101)(36,156,126,100)(37,155,127,99)(38,154,128,98)(39,153,129,97)(40,152,130,96)(41,151,131,95)(42,150,132,94)(43,149,133,93)(44,148,134,92)(45,147,135,91)(46,146,136,90)(47,145,137,89)(48,144,138,88)(49,143,139,87)(50,142,140,86)(51,141,113,85)(52,168,114,112)(53,167,115,111)(54,166,116,110)(55,165,117,109)(56,164,118,108) );
G=PermutationGroup([[(1,15),(2,211),(3,17),(4,213),(5,19),(6,215),(7,21),(8,217),(9,23),(10,219),(11,25),(12,221),(13,27),(14,223),(16,197),(18,199),(20,201),(22,203),(24,205),(26,207),(28,209),(29,133),(30,44),(31,135),(32,46),(33,137),(34,48),(35,139),(36,50),(37,113),(38,52),(39,115),(40,54),(41,117),(42,56),(43,119),(45,121),(47,123),(49,125),(51,127),(53,129),(55,131),(57,86),(58,143),(59,88),(60,145),(61,90),(62,147),(63,92),(64,149),(65,94),(66,151),(67,96),(68,153),(69,98),(70,155),(71,100),(72,157),(73,102),(74,159),(75,104),(76,161),(77,106),(78,163),(79,108),(80,165),(81,110),(82,167),(83,112),(84,141),(85,179),(87,181),(89,183),(91,185),(93,187),(95,189),(97,191),(99,193),(101,195),(103,169),(105,171),(107,173),(109,175),(111,177),(114,128),(116,130),(118,132),(120,134),(122,136),(124,138),(126,140),(142,180),(144,182),(146,184),(148,186),(150,188),(152,190),(154,192),(156,194),(158,196),(160,170),(162,172),(164,174),(166,176),(168,178),(198,212),(200,214),(202,216),(204,218),(206,220),(208,222),(210,224)], [(1,54),(2,55),(3,56),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(57,156),(58,157),(59,158),(60,159),(61,160),(62,161),(63,162),(64,163),(65,164),(66,165),(67,166),(68,167),(69,168),(70,141),(71,142),(72,143),(73,144),(74,145),(75,146),(76,147),(77,148),(78,149),(79,150),(80,151),(81,152),(82,153),(83,154),(84,155),(85,193),(86,194),(87,195),(88,196),(89,169),(90,170),(91,171),(92,172),(93,173),(94,174),(95,175),(96,176),(97,177),(98,178),(99,179),(100,180),(101,181),(102,182),(103,183),(104,184),(105,185),(106,186),(107,187),(108,188),(109,189),(110,190),(111,191),(112,192),(113,221),(114,222),(115,223),(116,224),(117,197),(118,198),(119,199),(120,200),(121,201),(122,202),(123,203),(124,204),(125,205),(126,206),(127,207),(128,208),(129,209),(130,210),(131,211),(132,212),(133,213),(134,214),(135,215),(136,216),(137,217),(138,218),(139,219),(140,220)], [(1,224),(2,197),(3,198),(4,199),(5,200),(6,201),(7,202),(8,203),(9,204),(10,205),(11,206),(12,207),(13,208),(14,209),(15,210),(16,211),(17,212),(18,213),(19,214),(20,215),(21,216),(22,217),(23,218),(24,219),(25,220),(26,221),(27,222),(28,223),(29,119),(30,120),(31,121),(32,122),(33,123),(34,124),(35,125),(36,126),(37,127),(38,128),(39,129),(40,130),(41,131),(42,132),(43,133),(44,134),(45,135),(46,136),(47,137),(48,138),(49,139),(50,140),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,180),(58,181),(59,182),(60,183),(61,184),(62,185),(63,186),(64,187),(65,188),(66,189),(67,190),(68,191),(69,192),(70,193),(71,194),(72,195),(73,196),(74,169),(75,170),(76,171),(77,172),(78,173),(79,174),(80,175),(81,176),(82,177),(83,178),(84,179),(85,141),(86,142),(87,143),(88,144),(89,145),(90,146),(91,147),(92,148),(93,149),(94,150),(95,151),(96,152),(97,153),(98,154),(99,155),(100,156),(101,157),(102,158),(103,159),(104,160),(105,161),(106,162),(107,163),(108,164),(109,165),(110,166),(111,167),(112,168)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,67,224,190),(2,66,197,189),(3,65,198,188),(4,64,199,187),(5,63,200,186),(6,62,201,185),(7,61,202,184),(8,60,203,183),(9,59,204,182),(10,58,205,181),(11,57,206,180),(12,84,207,179),(13,83,208,178),(14,82,209,177),(15,81,210,176),(16,80,211,175),(17,79,212,174),(18,78,213,173),(19,77,214,172),(20,76,215,171),(21,75,216,170),(22,74,217,169),(23,73,218,196),(24,72,219,195),(25,71,220,194),(26,70,221,193),(27,69,222,192),(28,68,223,191),(29,163,119,107),(30,162,120,106),(31,161,121,105),(32,160,122,104),(33,159,123,103),(34,158,124,102),(35,157,125,101),(36,156,126,100),(37,155,127,99),(38,154,128,98),(39,153,129,97),(40,152,130,96),(41,151,131,95),(42,150,132,94),(43,149,133,93),(44,148,134,92),(45,147,135,91),(46,146,136,90),(47,145,137,89),(48,144,138,88),(49,143,139,87),(50,142,140,86),(51,141,113,85),(52,168,114,112),(53,167,115,111),(54,166,116,110),(55,165,117,109),(56,164,118,108)]])
82 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | D28 | C4○D28 | D4⋊2D7 |
kernel | C24.10D14 | C14.C42 | C2×C4⋊Dic7 | C2×C23.D7 | C14×C22⋊C4 | C2×C28 | C22×C14 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 3 | 1 | 2 | 1 | 2 | 2 | 3 | 10 | 6 | 3 | 12 | 12 | 12 | 12 |
Matrix representation of C24.10D14 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 19 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 25 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 6 |
0 | 0 | 0 | 0 | 0 | 28 |
0 | 10 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 25 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 0 |
0 | 0 | 0 | 0 | 0 | 17 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,19,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[3,0,0,0,0,0,0,10,0,0,0,0,0,0,7,0,0,0,0,0,0,25,0,0,0,0,0,0,1,0,0,0,0,0,6,28],[0,3,0,0,0,0,10,0,0,0,0,0,0,0,0,7,0,0,0,0,25,0,0,0,0,0,0,0,17,0,0,0,0,0,0,17] >;
C24.10D14 in GAP, Magma, Sage, TeX
C_2^4._{10}D_{14}
% in TeX
G:=Group("C2^4.10D14");
// GroupNames label
G:=SmallGroup(448,487);
// by ID
G=gap.SmallGroup(448,487);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,253,120,254,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=c,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations